Search results for "three-dimensional nanoprinting"

showing 2 items of 2 documents

Three-Dimensional Superconducting Nanohelices Grown by He+-Focused-Ion-Beam Direct Writing

2019

Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated s…

Research programFocused-ion-beam-induced depositionLibrary scienceBioengineeringGinzburg−Landau equation02 engineering and technologyEuropean Social FundPhase slipsHelium ion microscopePolitical scienceSemiconductors and NanostructuresGeneral Materials ScienceCost action[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]ComputingMilieux_MISCELLANEOUSGinzburg-Landau equationNanosuperconductorsMechanical EngineeringGinzburg landau equationFísicaQuímicaGeneral ChemistryDirect writing021001 nanoscience & nanotechnologyCondensed Matter PhysicsWork (electrical)Christian ministryHigh field0210 nano-technologyThree-dimensional nanoprinting
researchProduct

Three-Dimensional Superconducting Nanohelices Grown by He

2019

Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He+ focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga+ FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters. Our results show the smallest and highest-densely packed nanohelix ever fabricated s…

nanosuperconductorsLetterphase slipsthree-dimensional nanoprintingHelium ion microscopeGinzburg−Landau equationfocused-ion-beam-induced depositionNano letters
researchProduct